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ABSTRACT 

Let Ab...,A, and K be m x m symmetric matrices with K positive definite. 
Denote by Cthe convex hull of {/11 ..... A,}. Let { ]tp(KA)}~ be the n real eigen- 
values of KA arranged in decreasing order. We show that max 2p(KA) on C 
is attained for some A* =E~= l o~i*A i for which at most p(p 4:- 1)/2 of 0el* do 
not vanish. We extend this result in several directions and consider applica- 
tions to classes of integral e:tuations. 

1. Introduction 

Let A and  K be m x m real valued symmetric matrices. Assume fur thermore 

that  K is positive definite. Consider  the matrix K A  which is similar to the symmetric 

matr ix  K ~ A K  ~. Thus the eigenvalues of K A  are real and  we arrange them in 

decreasing order  

~I(KA) ~ 22(KA) _-> "" => ~m(KA). 

Denote  by T the inverse matr ix  of K .  It  is a famil iar  fact that  21(KA) can be 

characterized as 

x ' A x  
21(KA) = m a x - -  

x x ' T x  

where x is a co lumn vector and  x'  the t ransposed line vector of x .  Let A1, . . . ,A ,  

be m x m real valued symmetric matrices and  denote by C(A 1, . . . ,A . )  the con- 
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vex hull of the set (A1,..-,An). Noting that ;~I(KA) is a convex function on 

C(A1, ..-, An) we see that the maximum of ;t I(KA) is achieved on the set (A1, "", An}. 

This principle was used in [1] to derive a comparison theorem of a rather unusual 

type for second order linear differential equations. A natural question is to char- 

acterize a subset of  C(A1,...,An) on which ).p(KA) attains its maximum. In some 

cases this was done by Nowosad [8]. In order to state his results we recall a few 

definitions. A real valued m x m matrix R (not necessarly symmetric) is called 

totally positive (TP) if all its minors are nonnegative. If all minors of  R are 

positive then R is called strictly totally positive (STP). The matrix R is said to 

be oscillating if R is TP and R k is STP for some natural k. The remarkable 

properties of oscillatin~ matrices are discussed in [3] and [4]. The eigenvalues 

of  oscillating matrices are positive and distinct. Nowosad [8], relying on the 

fine structure of oscillating matrices established the following result: 

THEOREM I. Let K be an oscillating (not necessarily symmetric) matrix. 

Denote by ~ the set of all nonnegative diagonal matrices having trace of mag- 

nitude 1. Then maxD~e;t,(KD ) is achieved for a nonnegative diagonal matrix 

D with exactly p positive entries. 

This result is standardly extended to integral equations of the form 

(1.1) K(x, y)@(y)dp(y) = 2O(x) 

where p is a nonnegative measure normalized by the condition f~ dp = 1 and 

K(x, y) is a continuous oscillating kernel  Recall that a continuous kernel K(v, y) 

is said to be oscillating if for any 2m points 0 < xl < ... < xm < 1, 0 < y~ < ... 

< Ym < 1 the matrix (K(x~,yj))"~ is an oscillatin~ matrix for m = 1,2, . - . .  It is 

known [3, p. 208] that for a nonnegative finite measure p the nontrivial eigen- 

values of (1.1) are distinct and positive 

J.I(P) > ~2(P) > "'" > 0. 

Nowosad proved 

THEOREM II. Let K(x,y) be an oscillating (not necessarily symmetric) 

kernel. Let p be a nonnegative normalized measure S~ dp = 1. Then maxp;tp(p) 

is achieved for a distribution/~ with exactly p concentrated masses. 

These results of Nowosad were extended in several directions by Karlin [6]. 

On the other hand, the case where K(x, y) is the special oscillating positive de- 

finite kernel 
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~ x ( 1 - y )  0 _ < x _ < y = <  1, 
(1.2) K(x,y)  

I 
t ( 1 - x ) y  O <= y <= x <= 1 

was dealt with by a number of authors in different contexts. This kernel is the 

Green's function of the differential operator - d2u/dx 2 associated with boundary 

conditions u(0) = u(1)=0.  (Consult, for example, Karlin [6] and references 

therein.) Returning to our maximum problem 

max 2v(KA) 
A ~ C ( A ~  . . . . .  A n )  

and examining the examples above it is quite natural to consider the problem 

of the existence of an extremal matrix A which is a convex combination of s 

matrices {Ax,...,A,} such that s depends only on p and not on n. To be more 

precise, let Hj(A~,...,A~) be the subset of C(A, . . . ,An)  of all matrices which 

are spanned by at most j matrices from {A~,"',An}. Under certain conditions 

we develop results of the form 

max ).p(KA) = max )~v(KB) 
A e C(A1 . . . . .  A.)  B ~ Hs (A1  . . . . .  An )  

such that the upper bound of  s depends only on p.  Our main result is 

THEOREM 1. Let A1,. . . ,A,  and K be m • m real valued symmetric matrices 

with K positive definite. Then 

(1.3) max 2p(KA) = max 2p(KB) 
A ~ C(A1 . . . . .  A . )  B �9 Hp(~  + 1 )/2(A1 ..... An)  

for p = 1,. . . ,m and this result is best possible. 

The set C(A~, ...,An) is called totally nondegenerate with respect to the matrix 

K if for any matrix belonging to this set, the inequalities 

2~(KA) > 22(KA ) > . - -  > )~m(KA) 

hold. Examples where this holds are indicated later. In this case we have: 

THEOREM 2. Let A~,.. . ,A n and K be m x m real valued symmetric matrices 

with K positive definite. I f  the set C(A~,...,A,) is totally nondegen:rate with 

respect to K,  then 

(1.4) max 2p(KA) = max 2p(KB) 
A E C(A  j . . . . .  A . )  B ~ Hp (A  1 . . . . .  An)  

for p =  1,. . . ,n.  

The equality (1.4) holds for a specified p if any matrix belonging to the set 
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C(AI , . . . ,A , )  satisfies the condition 2p_ ~(KA)> 2p(KA). Suppose that J1, "", J ,  

are nonnegative symmetric positive definite Jacobi matrices. Then the set 

C(J~, . . . ,J ,)  is totally nondegenerate with respect to a symmetric oscillating 

matrix K.  

Theorems 1 and 2 can be extended in several ways. Some extensions are dis- 

cussed in Section 4. For example, Nehari 1-7] considered the maximum problem 

2p(A) 
m a x  

( f  ~ a~t(x)dx) 2 

for the set of nonnegative nondecreasing functions A(x), where 2p(A) are the 

eigenvalues of Sturm-Liouville system 

dZu 1 
dx 2 + A(x)u = 0, u(0) u(1) 0. 

In Section 4 we consider maximum of 2p(KA)/f(A) on the set C(A1,. . . ,A,)  

where f (A )  is a concave positive function on this set. All of our results remain 

valid if A1, '" ,A,  are bounded linear symmetric operators and K is a linear 

compact positive definite operator in a Hilbert sl~ace -~.  The last section is 

mainly devoted to applications of our results to certain classes of integral 

equations. 

2. The main result 

Let ~ be an m-dimensional real Hilbert space with an inner product (x,y). 

Let A be a linear symmetric operator in ~ ,  i.e. (Ax, y) = (x, Ay) .  It is well 

known that all eigenvalues of A are real. We arrange them in decreasing order 

(2.1) 2,(A) ~ 22(A) ~ ... ~ i~m(Z). 

Furthermore to each eigenvalue 21 corresponds an eigenvector xi satisfying 

Ax~ = 2ix i i = 1, ..., m,  

(xl,xi) = 6ij, i , j  = 1,.. . ,  m. 

There are several known extremal characterization of the eigenvalues 2~ (A) 

(see for example [-2, I p. 321] and [9]). For our later applications we need the 

following max-min characterization going back to Poincar6 and which P61ya 

and Schiffer called the Convoy Principle [-9]: 

LEMMA l. Let A be a linear symmetric operator in an m-dimensional 
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real Hilbert space. Denote by 2i(A) > ... > 2,,(A) the m real eigenvalues o f  

A arranged in deereasin9 order. Then each 2i is #iven as 

(2.2) 2i = max min (Ax, x) 
s, x~S~ (x ,x)  ' 

where S i is a vector subspace of a dimension i. The maximum is obtained for 

the subspace Si spanned by the first i eigenvectors xl ,  ...,x~.However, the max- 

imum may be obtained for other subspaces S i. I f  the minimum of (Ax,x)/(x,  x) 

on some subspace Si is equal to 2i then S, contains an eigenvector of A corres- 

pondin9 to 2 i. 

Let A be an m x m real valued symmetric matrix. The matrix A is a linear 

symmetric operator on a space of all m-dimensional real valued column vectors 

with respect to the inner product 

(2.3) (x,y)  = y ' x ,  

where y '  is the transposed line vector of y .  Now the eigenvalues of  A can be 

characterized by the convoy principle. Let A1,... ,A. be m x m real valued sym- 

metric matrices. Denote by C(Ai, . . . ,A,)  the smallest convex set which contains 

A1, ...,A,.: 

C(A1, '" ,A , )  = {AIA  = a,A,, ~, > O, f = 1, . . . ,n ,  % o~, = 1}. 
i = 1  i = l  

By P.  we denote the set of  all n-dimensional probability vectors: 

n 

P , =  { ~ = ( ~ , . . . , c t , ) ]  ~_>_ 0, i =  1 , . . - ,n ,  2 oh= 1}. 
i = 1  

Assume that A belongs to C(Ai , . . . ,A , ) .  We say that A is represented by 

c~ = (cq, . . . ,e , )  if A = 2~ ~'=l cqA~, and e e P , .  Clearly the representation of A 

may not be unique. By P,,j we denote the set of all n-dimensional probability 

vectors which have at most j nonvanishing components:  

J 
Pn,j = {~x = ( ~ l , " ' , ~ n ) ]  e e P , ,  Y; c~i. = 1, for 1 < i, < i 2 " ' "  <ij <= n}. 

k = l  

Let Hj(AI, , . . . ,A,)  be the set of  all matrices spanned by at most j matrices from 

{Ax,..-,A,} : 

n 

Hj(A1, ' " ,A , )  = {A[ A = ~2 ~,A i, ( e l , - ' - , e , ) e P , , j } .  
i = 1  

F o r j  > n Hj(A1, . . . ,A,)  is defined as the set C(A1, . . . ,A,) .  Let K be an m x m 
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real valued symmetric positive definite matrix. Consider the matrix KA where A 

belong~ to the set C(A1,"', An). The matrix KA is similar to the symmetric matrix 

K~AK ~ since K*AK �89 = K-~(KA)K ~. Thus the eigenvalues of KA are real 

and we arrange them in decreasing order 21(KA) > ... => 2m(KA). As we pointed 

out earlier: 

(2.4) 2~(KA) = 2,(K~AK ~) 

for i =  1 , - . . ,m.  Consider the following maximum problem defined on 

C(A1,...,A,): Find maxa~c(a~ ..... A~),~p(KA) for p = t , - . . , m .  

DEFINITION 1. A natural number dp is called the pth degree of  the set 

C(AI,...,An) with respect to the maximal problem maxa�9 a ...... A,),~p(KA) if 

max 2p(KA) = max ~p(KB) 
A � 9  . . . . .  A n )  B � 9  , . . .  A n )  

and 

max ~p(KA) > max ~p(KB) 
A ~ C(A 1 ... A ~ )  B �9 H a p  - ~ ( A l  ... A n )  

if d p > l .  
By definition 1 < dp < n.  

THEOREM 1. Let A1, '" ,A,  and K be m • m real valued symmetric matrices 

with K positive definite. Then 

(2.5) max 2p(KA) = max 2p(KB) 
.4 �9 C ( h  I "... , A n )  B �9 H p  (p + l ) / 2 ( A  1 . . . . .  A n )  

for p = 1,.. . ,m and this result is best possible. 

PROOf. Consider first the case where K is an identity matrix I .  Assume to the 

contrary that the p-degree of the set C(A 1, ...,An) is greater than p(p + 1)/2, i.e., 

dp> p(p + 1)/2 + 1. Let A* be an extremal matrix 

(2.6) max 2p(A) = 2p(A*) = ,~* 
A �9 C ( A  1 . . . . .  A , )  

belonging to the set Hd~(A~, ...,A,). That means there exists a representation 

a * =  (a*, ..., a*) with nonvanishing components ct*~j, j = 1,-.. ,dp and 

1 < il < i2  "'" < idp < n. 

By the convoy principle 

] ;o(A*)  --- min (A'x,  x) 
~ s .  (x,x) 

for some p-dimensional subspace, where the inner product (x,y) is defined by 
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(2.3). Furthermore Sp can be chosen as a subspace spanned by the p first eigen- 

vectors Xx, '",xp of A*. Consider the following homogeneous system of linear 

equation in the dp unknowns ~l, '",~ap : 

dp 
(2.7a) ~ ~j(Ai x,,,xv) = 0 

j = l  

for all u,v = p except for u = v = p, and 

dp 
(2.7b) ]~ ~j = 0. 

j = l  

These are exactly p(p + 1)/2 equations with dp unknowns. As dp>  p(p + 1)/2 

there exists a nontrivial solution ~, .- . ,~dp. 

Form X = ~: ~': 1 ~jAij and A, = A* + e.4 with e to be determined. For any 

y e Sp, i.e. y = ]~ ~'= 1 a~xi and (y, y) = 1 we have in view of (2.7) 

(a,y, y) = (A'y ,  y) + ea2p (.4x (p), x(P)). 

Choose the sign of e so that 

(2.8) e(Ax ~p), x ~p)) > O. 

Then 
(a~y,y) >= 2p(A*) = 2*. 

From the convoy principle we conclude that 

(2.9) 2,(A~) > 2*. 

Now for ]e I small enough, the matrix A~ belongs to the set Hap(A1,".,A,). 
Increase l el in magnitude from 0 preserving the sign in (2.8) until the first 

,j + e~j, j = 1,-..,alp, vanishes. This holds for some positive I e0] in view of 

(2.7b). Thus we obtained that A,o is in Hal,-I(Aa,"', A,). From (2.9) we have that 

2p(A~o ) = 2* and finally we conclude that the p-degree of the set C(A 1, ... ,A,) 
is not greater than d p -  1. This contradiction proves the equality (2.5) in case 

that K = I .  For a general positive definite matrix K we use the equalities (2.4) 

to obtain the above case. 

The following example shows that the upper bound p(p + 1)/2 in (2.5) is best 

possible. First let p = m. For fixed integers ~,/3 satisfying 1 < ~ < m, 1 < fl < m 

define an m x m symmetric matrix E,B = ~e~ j j~ to be 

~ 1 for i = o ~ , j = f l ,  

e ~  = 1 for i = f l ,  j=o~ ,  

0 for other values of i and j .  
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Let Q1,"',Q,~(m+x)/2 be m • m symmetric matrices Q1 = El l  + El2; Q2 = E l l  

- E 1 2  @ E t a , " ' ;  Qm=E1, - -  E l m  "q- E 2 3 , ' " ;  Q2m-3 = El1 --  E2(m-1) + E 2 m , ' " ;  

Q m ( m - 1 ) / 2 - 1  = E l l - E ( m - 2 ) ( m - 1 )  -Jr- E ( m - 2 ) m ;  Q m ( m - 1 ) / 2  = E l l - - E ( m - 2 ) m ' - I "  

E ( m - l ) m ;  Q m ( m - 1 ) / 2 + l  = EI~ - E ( m - 1 ) m ;  Q m ( m - 1 ) + i  = E i i ,  i = 2, . . . ,m.  
The trace of each E~a is equal to ~a  and so trace of  each Q~ is equal to 1. 

This shows that tr(Q) = 1 for any Q e C(Q~,...,Qmcm+~)/2). Let K be the unit 

matrix I .  It  is well known that 

2i(a) = tr(O) = 1, Q ~ c(o~, ..., Om(m+l)/~_). 
i=1 

Therefore 2re(Q) < 1/m with the sign of equality holding only if 

/~t(Q) = 22(Q) . . . . .  2~(Q). 

As Q is a symmetric matrix, the equality 2 r e ( Q )  : 1/m holds if and only if 

Q = (1/m)I. It is easy to show that 

1 re(m+ 1)/2 
- -  = 22 ~ i Q ~  
m i=1 

only if 

0~ i ~--- 
1 

m[m(m-1) /2+l ]  ' for i =  1 , . . . , m ( m - 1 ) / 2 + l ,  

1 
Oti - -  

m 
for i = re(m- 1)/2 + 2,...,  m(m + 1)/2. 

This shows that the m-degree of the set C(Q1,... , Qm(m+ 1)/2)  is exactly m(m + 1)/2. 

For  1 < p < m let Q1,'",Qp(p+l)/2 be the p x p symmetric matrices defined 

above. We define an m x m matrix A, as a diagonal block matrix 

A i = diag(Q~,0}, for i = 1,. . . ,  p(p + 2)/2. For  any matrix A, C(A1,..., Ap(p+ 1)/2) 

is a block diagonal matrix diag{Q,0} where Q belongs to C(Q1,'",Qpo+I)/2). 

According to the previous case 

1 
max 2p(A) = max 2e(Q) = - 

X ~ C(A ~ ..... Av (v * ~ ~/2) (2 ~ C((21 ..... Q ~ (v + ~ )/2) P 

and this maximum is obtained for a unit matrix of the form diag{(1/p)I,,O} 

belonging only to the set Ho<p+l)/z(At, "'-,Ap(p+l)/2) (Ip is a p x p unit matrix). 

The proof  of  Theorem 1 is completed. 

In what follows we show that if for a some p Theorem 1 is sharp then there exist 

an extremal matrix B which satisfies 

2~(KB) = 2z(KB ) . . . . .  2~(KB), 
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Thus if no matrix A in C(AI, . . . ,A,)  satisfies these conditions we can improve 

the upper bound p(p + 1)/2. 

3. Totally nondegenerate sets 

The set C(A1, . . . ,A,)  is called totally nondegenerate with respect to the matrix 

K if any matrix A from this set satisfies the inequalities 

(3.1) /~I(KA) ~> 22(KA) > -.. > I~m(KA). 

THEOREM 2. Let A~, . . . ,A,  and K be m x m real valued symmetric matrices 

with K positive definite. I f  the set C(A~,..-,A,,) is totally nondegenerate with 

respect to K ,  then 

(3.2) m a x  }~p(KA) = m a x  )~p(KB) 
A E C(  A j . . . . .  A . )  B ~ H p(  A 1  . . . . .  A n )  

for  p =  l , . . . , m .  

PROOF. As in the proof  of Theorem 1 assume that K = I .  Let gv be the set 

of all extremal matrices B, i.e., 

m a x  2p(A) = 2p(B). 
A ~ C ( A 1  . . . . .  A . )  

The set gp is compact. Let P,  be the set of all probability vectors e = (0q,..., e,). 

bye  + ~ +) + + < . . .  < + Denote = (e , . . . , e  an increasing rearrangement o f e : e  < e2 = = e , ,  

el. = ei~,j = 1,---,n and {il, . . . , i~} is the set {1,.- . ,n}. Define a complete 

ordering in P,,: e -< fl iff 

(3.3) e f  = i l L  j =  1 , . . . , i - 1 ,  and e + <  fl+ where 1 < i _ _ < n .  

The set gv is the collection of all representations in P,  of the extremal matrices 

belonging to d~ 

(3.4) ~p = {e = (e , , . - . , e , )  I e ~ P, ,  ~, e,A i ~ gv}" 
i=1 

Again o~p is a compact set. Let e*=  (e*, .. ., e*) be a minimal element in gp with 

respect to a complete order (3.3). Define A* to be the matrix Y~"i=le*Ai. 

Clearly A* belongs to gv" We claim that A* is in Hv(Aa, . . . ,A,) .  Assume to the 

contrary that 0 < e*,j for j = 1 , - . . , r  with r => p + 1 and other e* vanish. Con- 

sider the nontrivial solution ~ l , " ' ,~ r  of p linear homogenic equations 
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~j(Aijxu, Xp) = O, U = 1, . . . ,p--  1 
(3.5) J = 1 

Z~ =0. 
j = l  

The vectors xl , . . . , xp  are the p first orthonormal eigenvectors of A*. Form 

X =  Z s = l ~ i A ~  and A~ = A * + e . 4 .  Let y e S p = s F { x ~ , . . . , x p } .  ]-hen y is 

of  the form y = z + axp where zesp{x~, . . . ,xp_~}.  From (3.5) it follows that 

(Ax,,xp) = 0 for u = 1 , . . . , p - 1 .  Thus 

(A,y,y)  = (A*z,:) + a22 * + e(,4z, z) + ea2(.4xp,xp). 

Now (].4z, z)l < b(z, z) for some positive b. Noting that (A'z ,  z) >= 2p_ ~(z, z) 

we obtain that 

(A'z,  z) + a 2p + e.(.4z, z) + ea2(.4xp, xp) > (2p_ 1 - ] e] b) (z, z) 

+ a i, + 

The nondegeneracy of  the set C(A1, . . . ,A,)  implies that 2p-1 > 2*. For a small 

enough e of the sign (Xxp,xp) such that: 

2p_~-[~Ib> 4*, A~eC(A1, . . . ,A . )  

we have the inequality 

2,(A3 > min (A y,y) > 4*. 
y~s. (Y.Y) = 

But 4" > 2p(A~). therefore it follows that 

2p(A~) = min (A~y.y) , 
~s. (y,y) ---2p 

and this equality requires that (~Tx,, x~) = 0. So 2,(A~) - 2" for a small enough 

e of arbitrary sign. Let ~(e) = (~l(e), '" ,  ~,(e)) be the vector ~j(e) = o(*, + e~i~, 

j = 1 , . . . , r  and ~/(e) = 0 for other components of ~(e). As we showed above, 

c((e) belongs to the set ~p for any small e of an arbitrary sign. This contradicts 

the minimality of c~* in ~e with respect to a complete order (3.3). The proof  of  

the theorem is completed. 

Examining the proof of Theorem 2 we see that (3.2) holds for some p if any A 

belonging to C(A1,. . . ,A,)  satisfies 

(3.6) 4,_ i(KA) > 2p(KA). 
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The set C(A1,...,A,) is called nondegenerate of order p with respect to K if 

(3.6) holds for each A from this set. The set C(A1, ...,A,) is called approximable 

by nondegenerate set of order p with respect to K if 

i) there exists a sequence of n + 1 symmetric m • m matrices Alq, '",A,q,  Kq, 

q = 1,2, . . . ,  such that limq_~ooAiq = Ai, i = 1 , . . . ,n ,  limq_~ooK q = K, 

ii) the sets C(A~q,...,A,q) are nondegenerate of order p with respect to Kq. 

If the sets C(Alq,...,A,q) are totally nondegenerate with respect to Kq then 

C(A~,...,A,) is called approximable by a totally nondegenerate set with respect 

to K .  In fact we proved: 

THEOREM 3. Let Ax, . . . ,A,  and K be m • m real valued symmetric matrices 

with K positive definite. Let the set C(AI, .. . ,A,) be a nonde#enerate of order p 

with respect to K or approximable by such a set. Then 

(3.7) max 2p(KA) = max 2~,(KB). 
A � 9  . . . . .  A.) B � 9  . . . . .  A n )  

I f  the set C(Ax,-..,A,) is totally nondegenerate with respect to K or approxi- 

mable by such a set, then this equality holds for p = 1, . . . ,m.  

We now bring an example of a totallj  nondegenerate set. Recall that a matrix Q 

is called totally positive (TP) if all minors of Q are nonnegative. If all minors 

of Q are positive then Q is called strictly totally positive (STP). If  Q is a TP matrix 

and for some natural power i Q is ~ STP matrix, then Q is called an oscillating 

matrix. It is known [3, p. 123] that the product of an oscillating matrix with a 

nonsingular totally positive matrix is again an oscillating matrix. The eigen- 

values of an oscillating matrix are positive and distinct. 

For farther remarkable properties of these matrices see [2-1, [3'1 and [4,1. Let 

J = (hij)n~ be a Jacobi matrix, i.e., hij = 0 for ] i - j l  > 2. If  J is a nonnegative 

symmetric matrix which is nonnegative definite, then J is a totally positive matrix 

[4, p. 113,1. Suppose that J1 , ' " , J ,  are n nonnegative positive definite Jacobi 

m x m matrices, and let K be a symmetric oscillating matrix. It follows that 

th~ set C(J1," ' ,J ,)  is totally nondegenerate with reslzect to the matrix K .  In 

[3, p. 316,1 it is shown that any nonsingular TP matrix can be obtained as a limit 

of STP matrices. Therefore, if J~,. . . ,  J ,  are nonnegative Jacobi matrices which 

are noanegative definite, then C(Jx, . . . ,J ,)  is approximable by a totally non- 

degenerate set with respect to a positive definite TP matrix K .  

COROLLARY 1. Let J1 , " ' , J ,  be m • m nonnegative Jacobi matrices which 
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are symmetric and nonneoative definite. Then, for a positive definite TP matrix 

K ,  we have the equalities 

(3.8) max 2p(KJ) = max 2p(KJ) 
J ~ C(Jl  . . . . .  J~) J ~H p(J~ ..... Jn) 

for p =  l , . . . ,m .  

Let K be a positive definite matrix such that all its minors of order p -  1 are 

positive. If  J is a nonnegative and positive definite Jacobi matrix, then it is easy 

to see that p - 1  compound of the matrix KJ is positive. Since the spectrum 

of KJ is positive from the Perron-Frobenius theorem, it follows that 

2p_ 1(K J) > 2p(KJ). 

This inequality implies that the set C(J~,...,J,) is nondegenerate of order p 

with respect to K ,  where J~, "",Jn are nonnegative and positive definite Jacobi 

matrices. Using the continuity principle we have by Theorem 3: 

COROLLARY 2. Let J1, . . . ,J ,  be nonnegative Jacobi matrices which are non- 

negative definite. Let K be a positive definite matrix with minors of order p - 1  

all nonnegative. Then 

3.9) max 
J E C ( J ~  . . . . .  J ~ )  

4. Extensions 

2p(KJ) = max 2p(K]). 
J sl ip(J1 ... . .  J . )  

Let A1,. . . ,A, and K be n + 1 symmetric matrices with K being positive definite. 

DEFINITION 2. A natural number pp is called the degeneracy index of order p 

of the set C(A1, . . . ,A,) with respect to K if any matrix from this set satisfies the 

inequality 

> 

Furthermore, there exists a matrix A belonging to C(A1, ...,A,) for which the 

equality 

holds. For p = 1, #1 is defined to be 1. 

DEFINITION 3. A natural number vp is called the extremal degeneracy index of 

order p of the set C(A1, ... ,A,) with respect to K if any extremal matrix A*, i.e., 

maxa~c(a, ..... a.)2p(KA) = 2v(KA*), satisfies 
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).p_v_(KA*) > ,~p(KA*). 

Furthermore, there exists an extremal matrix A* for which the equality 

~p_~p+l(KA*) = ~p(KA*) 

holds. For p = 1, vl is defined to be 1. 

By definition we have 

(4.1) 1 = vp < I~p < p.  

THEOREM 4. Let A~, . . . ,A  n and K be m x m real valued symmetric matrices 

with K positive definite. Denote by #p the degeneracy index of order p of the 

set C(A1,...,An) with respect to K.  Then 

(4.2) max 2p(KA) = max 2,(KB) 
A ~ C(A1 . . . . .  A . )  B ~Hup(2p  - up + 1)12(A1 ..... A.) 

for p = 1 , . . . ,m.  Moreover, if  the extremal degeneracy index vp is strictly less 

than l~p for some p then 

(4.3) max 2p(KA) = max 2p(KB). 
A e C(AI , ' " , A n )  B e H v p ( 2 p _  vp + 1)/2(A1 ..... An) 

PROOF. The proof of this theorem is merely a repetition of the proof of Theorem 

2 with the following modifications: Let A* be the extremal matrix defined in the 

proof of Theorem 2. Assume that v is the degeneracy index of order p of A*. 

(4.4) 2p_,(A*) > ),p_ ~ + I(A*) . . . . .  2p(a*). 

(Note if v = p then v = vp = p and (4.3) reduces to (2.5). Thus we assume that 

v >p) .  We claim that A* belongs to H~(2p-,+~)/2(A1,'",An). As v < vp this 

implies that A*~H~p(2p-v,+~)/z(A~,'",An) which proves (4.3). Assume to the 

contrary that 0<a* j  for j =  1 , . . . , r  with r > v ( 2 p - v + l ) / 2 + l  and other 

a* vanish. Consider the nontrivial solution ~1,.-.,~, of v~2p-v + 1)/2 linear 

homogenic equations 

~ j ( A i j x u , x p )  = 0 
j = l  

(4.5) ~ ~j(Aijx.,xo) = O, 
j = l  

i = 1  

U = 1 , 2 , . . . , p - I ,  

v = p - 1 , . . . , p - v + l ,  u = 1, . . . ,v ,  

F o r m . ~ =  ~ j= la j r  -At j  and A s = A * + e ~ Y .  
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As in the proof  of  Theorem 2 we obtain that 2p(A,) = 2* for a small enough 

of  an arbitrary sign. This contradicts the minimality of  ~*. 

We remark that if Theorem 1 is sharp for some p then by Theorem 4 we have 

the equality vp = p .  This implies the existence of an extremal matrix B such that 

).x(KB) . . . . .  ,~p(KB) as we claimed at the end of Section 2. 

It  is worth emphasizing that we have no examples of  sets whose degeneracy 

index/~p and extremal index vp satisfy the inequalities 

l < v p  < p p < p .  

From here we shall state our theorems only for the degeneracy in_'ex/~p and all 

our results will remain true if we replace /~p by vp. 

Consider next the maximum problem: Find 

(4.6) max 2p(KA)/f(A) 
A e C(AI  . . . . .  A . )  

for a positive concave function f (see Section 1 for motivation of this problem). 

We define exactly what we mean by a continuous function on C(A~,...,An). 

DEFINITION 4. A function g(A) is a continuous function on the set C(A~,..., An) 

if there exists an appropriate continuou; function g(~) defined on Pn su:h that  

g(A) = g(a) where ~ = (el, . .. , a,) is a representation of A, i.e., A = ~ 7= l ~ i A i  �9 

The function g(A) is linear if g(a) is linear and g(A) is concave on C(A1, ...,A,) 

if g(a) is concave on P,. 

Note that by this definition we may have that g(A) is multi alent in the case 
n n 

that A has more than one representation A = ~ = ~ a i A i  = ~ i=lfl~A~ and 

g(~) ~ g(/~). 

THEOREM 5. Let A1,'",An and K be m x m real valued symmetric nonne- 

gative definite matrices with K positive definite. Denote by pp the degeneracy 

index of order p of the set C(A1,...,An). Let f be a positive concave function 

defined on C(AI,. . . ,A,).  Then 

(4.7) max 2p(KA)/f(A) = max 2p(KB)f(B) 
A ~ C(AI ..... An) B ~ H I l p ( 2 p - l z p +  1 ) / 2 ( A I  . . . . .  A~)  

for p =  1,. . . .m. 

To prove the theorem consider an auxiliary lemma: 

LEMMA 2. Let A~,.. . ,A n and K be m x m real valued symmetric matrices 

with K positire definite. Let f be a positive linear function on C(A1, "', An). 

Then 
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max 2p(KA)/f(A) = max 2p(KB)/f(B), p = 1,-.-, m. 
A ~ C ( A 1 ,  ...,A~) B ~ H U . ( 2  ~ - l * .  + 1)(A1 .. . . .  A. )  

PROOF. The positive linear function f is of the form 

! = 0,~ 
i i = l  

where 0~>0  or i = 1 , . . . ,n .  Define a matrix A i to be A,/Oi for i = 1 , . . . ,n .  

Since the function 2p(KA) is homogenic it is easy to show that for any matrix A 

belonging to the set C(AI,. . . ,A,) the equality 2p(KA)/J(A) = 2p(KA) holds for 

an appropriate matrix A from C(Ai, ...,A,) and vice versa. In fact, if A and A 

have representations A = Y~ ~.= i ~iAi and A = ~E i=i ~i A, then ~l, '" ,  ~, are 

defiined by the equations 

(4.8) ~i = O~iOI (~jOj, i = 1, . . . ,n.  

The transformation above is a one-to-one transfolrr.aticn cf  P,  cnto it,elf, f u r -  

thermore, if g has exactly k vanishing components then ~ has the same number 

of vanishing components. Thus 

max 2p(KA)/f(A) = max 2p(KA). 
A ~ C ( A  1 . . . . .  A n )  A e C ( A  1 . . . . .  A . )  

Applying Theorem 4 to the maximum problem on the right hand side and carrying 

out the inverse transformation of (4.8) we establish (4.7) for a linear positive f .  

PROOF OF THEOREM 5. Let f be a positive concave function on C(A1,...,A,). 

Let .s denote all linear functions on C(A1, ...,A,,) such that L(B) > f(B) for any 

B EC(Ax,. . . ,A,).  Note that L is positive on C(Aa,...,A,) since f is positive. It 

is well known that f(A) may be characterized as 

f(A) = min L(A). 
L ~ _q" 

The assumption that A1, . . . ,A, are nonnegative definite implies that 2p(KA) > 0 

and thus 

) p(KA) _ max2p(KA) 
f(A) z~.~ L(A) " 

Now 
2u(KA) max - max max 2p(KA) 

A~C(A, ..... a.) f(A) A L L(A) 

= max max2p(KA) 
z ,4 L(A) 
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2p(KA) 2p(KB) 
m a x  

a L(A) L(B) 

where B belongs to Hu,(2p_uv + 1)/2(A1,---,A,). To this end 

2p(KA) 2p(KB) 2p(KB) 
max - m a x  - 

a~c(a  ...... A.) f (A)  L~.~ L(B) f (B)  

which concludes the proof of the theorem. 

Consider now the maximal problem (4.6) with q linear conditions hj(A) = e 

f o r j  = 1 , . . . ,q .  

THEOREM 6. Let A i , . . . , A  n and K be m x m real valued symmetric non- 

negative definite matrices with K positive definite. Assume that hi, ...,hq are q 

linear functions defined on the set C(A1, . . . ,A,)  such that at least one matrix 

from this set satisfies the equalities hi(A ) = cj, for j = 1, . . . ,q .  Let f be a po- 

sitive concave function defined on C(AI , . . . ,A , ) .  Denote by I~, the degeneracy 

index of order p of C(A1, . . . ,A,) .  Then 

(4.9) max )~p(KA)/I(A) = max 2p(KB)/f(B) 
A E C(A1 ..... An) B e H , u p ( 2 p - # p  + 1)/2 +q(A1 ..... A . )  

for p = 1 , . . . ,m,  The maxumim is taken over the matrices satisfying the q 

conditions hj(A) = cj, j = 1 , . . . ,q .  

PROOF. Assume first that f (A)  = 1 on C(A1, "",An). Then the proof of (4.9) 

is simply a paraphrasing of the proof of Theorem 4 except that now we have 

to consider, in addition to the v(2p - v + 1)/2 equations (4.5), the q equations 

(4.10) ~ ~hk(Aij ) = O, k = 1, . . . ,q 
y=J. 

in view of the q given conditions. The proof for a general positive concave func- 

tion f on C(A1,". ,  A,) is merely a repetition of the proof of Theorem 5. 

Let ~ = (41, '" ,4,)  and t / =  0h,- . . , t / , )  be two nonnegative vectors such that 

(4.11) 0 < 4 , = < t / , ,  i =  1 , . . . ,n ,  ~ 4 , _  1_< ~ t  h. 
i = l  i = l  

Let C(A1,. . . ,A, ,4, t l)  be the following subset of  C(A~,.. . ,A,): 

C(A1,...,A,,~,~I) = {AIA -- Z aiAi, aePn,  ~i <= ai <= th, i = l , . . . ,n} .  
i = l  

Denote ~ =< a =< t / i f  4~ = < as = < t/i for all i. 
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THEOREM 7. (Friedland-Karlin). Let A1 , . . . ,A ,  and K be m x m real valued 

symmetric matrices with K positive definite. Assume that ~ and q satisfy con- 

ditions (4.11). Denote by ltp the degeneracy index o f  order p o f  C(,'11, .-., An). 
Let hi, ..., hq be q linear functions defined on C(A1, ..., An). Consider 

maxJ.p(KA) on the set C(A1,... ,A,,~,~I) subject to q conditions h ~ ( A ) =  

cj, j = 1, . . . ,  q Then this maximum is achieved for some A* g, n 

~*Ai, ~* ~ Pn, ~ < ~* < ~1 and at most pp(2p - pp + 1)/2 + q of the coefficients 

of ~* are unequal to one of the bounds ~i or ~l~. 

PROOF. Assume first that q = 0. Let 8p be the set of all extremal matrices in 

C(A~, . . . ,A , ,~ , t l ) .  Let ~ = (~ , . . . , ~ , )  be a probability vector and denote by 

~+ an increasing rearrangement of a vector a = (a l , . . . ,a , )  where at = 

min(~i - ~i, qi - ~i). 

Define a complete ordering in Pn ~ "< fl by (3.3). Now repeat the proof  of The- 

orem 4. In the case of q linear conditions we add to the equations (4.5) the q 

equations (4.10) as was done in the proof  of Theorem 6. 

THEOREM 8 (Friedland-Karlin). Let A1 , . . . ,A  n and K be m x m real valued 

symmetric matrices with K positive definite. Consider 

(4.12) max f (2a(KA), . . . ,  2p(KA)) 
A ~ C ( A  1 . . . . .  A n )  

where f (ya , . . . , yp)  is an increasing function of each of its arguments Yi. 

i) The maximum is achieved for some A = ~"=l~iA i, ct6P n, involving 

at most p(p + 1)/2 of the coefficients of ~ different from zero. 

ii) I f  the ~ are subject to the further constraints ~ < ct i < qi and q additional 

linear conditions Y/~=l~ibij = cj, j = 1 , . . . , q ,  then there exists A which 

maximizes (4.12) and has at most p(p + 1)/2 + q of the coefficients ~i unequal 

to one of the bounds ~i or qi. 

PROOF. The proof  of (i) i s similar to the proof  of Theorem 1. Let A* be an 

extremal matrix of (4.12) (K = I) .  Let x~,.. . ,  xp be the p first orthonormal eigen- 

vectors corresponding to 21(A*), ..., 2~(A*). Choose A~ as in the proof  of Theorem 

1. Now (A~x,x) = (A*x,x)  if a belongs to the subspace Sj - sp{xl,...,xs. ) for 

j __< p -  1. Thus by the convoy principle 

2j(A,) > min (A~x,x) 
.~sj  (x ,x)  =2j (A*) ,  j = 1 , . . . , p - 1 .  

If we choose the sign of e to satisfy (2.8) then we have also the inequality 

2p(A*) > 2p(A*). The function f (Y l , ' " ,Yp )  by assumption is an increasing 
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function. Furthermore we may assume that f(Yl,  "", Yp) is a differentiable func- 

tion such that Of/dyi > O, i = 1,. . . ,p. This is no restriction since f may be 

apTroximated by such a function. Finally we obtain that 

f(21(A),...,2p(A~)) > f~(2~(A*),...,2p(A*)). 

Since A* is an extremal matrix we get a contradiction as in the proof of Theorem 1. 

The proof  of (ii) is simply a modification of the proof  of (i) in the same way as 

in the proof  of Theorem 7. 

We co,~clude this section with an analogue result to the equality (4.2) in the 

case that A~, ...,An and K are complex valued hermitian matrices. Noting that 

the entries of an m x m complex valued hermitian matrix form m: real indepen- 

dent variables we obtain: 

THEOREM 9. Let A1,...,An and K be m • m complex valued hermitian 

matrices with K positive definite. Denote by pp the degeneracy index of order p 

of the set C(A1,'",An) with respect to K.  Then 

(4.13) max 2p(KA) = max 2p(KB) 
A ~ C ( A t  . . . .  A . )  B ~ H l t p ( 2 p - u p ) ( A l  . . . . .  A n )  

for p = 1 , . . . ,m.  

For/~p = p the equality (4.13) is best possible. This follows by a proper modifi- 

cation of the example given in Section 2. 

5. Integral equations 

Let a%f be a real Hilbert space. Suppose that A and K are bounded linear 

symmetric operators defined on .Cal. Assume furthermore that K is positive de- 

finite and KA is compact. This requirement is certainly guaranteed if K is compact. 

Thus the spectrum of  KA is at most denumerable with 2 = 0 being the only 

possible point of accumulation. Denote by 21(KA) > 22(KA) > --" the positive 

eigenvalues of KA.  If  the number of  positive eigenvalues is finite, i.e. 

21(KA) > 22(KA) > ..' > 2m(KA)> 0then let 2m+~(KA) = Am ~2(KA) . . . . .  0. 

Now using the convoy principle and the identities 2p(KA) = 2v(K~AK�89 p = 1,2,... 

we realize that all of  our results are valid in case that A~, .. . ,A, are bounded 

linear symmetric operators and K is compact and positive definite. As an important 

application we consider an integral transformation 

(5.1) (Ktk)(0  = f K(~, rl) dp(q)a(drl) 
,1i 
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where I is a compact subset of some Euclidean space and a(dr/) is a sigma-finite 

measure on I .  The relevant Hilbert space is L2(&r). Assume that K(4, ~/) is sym- 

metric and positive definite. The compactness o f  the associated operators is 

guaranteed by the integrability condition 

5,, f, oo. 
A bounded linear symmetric operator A to be considered is of the form 

(5.3) A,k(4) = a(~) 4'(4) 

i.e., multiplication of qS(~) by a given nonnegative function a(4) belonging to 

L2(da) 

f~ a2(4)a(d4) < oo. (5.4) 

Note that A is nonnegative definite. Let d be a bounded closed set of non- 

negative functions a(r in L2(da). Assume further that this set is normalized by 

the condition 

f l  a(4) u(~) a(d4) = (5.5) 1 

where u(~) is a nonnegative continuous function on I .  It is well known that d 

is a compact set in a weak topology. Let co (d )  denote the convex closure of ~/ 

in a weak topology so co ( d )  consists of all limits of functions of the form 

b(4) = ~ a,a,(r cq> O, ~ a , =  1 for a,(4) e d .  
f = 1  i = 1  

Denote by 

2i(a) > 22(a) > ... >= 0 

the nonnegative eigenvalues of the integral equation 

f ,  K(~,~/) a0/) ~(~) a(d~/) = 2~(4). (5.6) 

A continuous kernel K(~, r/) is said to be oscillatory if for every collection 

41 "~ 42 < "'" < ~m, r]l < 72 < "'" <~ /~m, ~i @ I ,  r 0 ~ I 

the matrix (K(~i,r0))]' is oscillatory for n = 1, . . . .  It is worth emphasizing that 

an oscillatory kernel need not be symmetric. An important case is the class of 
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kernels (-1)q6(~, q), where G is the Green's function of the differential operator 

L ,defined by 

d 1 d 1 d 1 
Ly = w.(x)  w._l(x-----) "'" dx  w, (x)  y(x)  

where w~(x), i = 1, ..., n are positive of continuity class C" on [0, 1] coupled 

with the boundary conditions 

y(0) = y~I)(0) . . . .  y(P-a)(0) = 0, 

y (1)=yO)(1)  . . . .  y ( q - l ) ( 1 ) = 0 ,  p + q = n ,  p , q , > l ,  

which are nonsingular with respect to L (i.e., only the trivial function satisfies 

Ly = 0 plus the boundary conditions). The demonstration that such kernels 

are oscillatory including several refinements and extensions involving more general 

boundary forms is elaborated in [5]. I f  K(~, ~/) is an oscillating kernel and a(r 

nonnegative non~anishing functions then 

).t(a) > 22(a) > ... > 0 

(see [3, p. 208]). In that case the set co(d)  is totally nondegenerate. Consider 

the following maximal problem defined on co(d) :  

(5.7) max 
[f i(a(O)sv(~)a(dr 

where v is a positive continuous function on I and s is a fixed number 0 < s < 

It is well known that 

f ( a ) =  f f t  (a(O)Sv(Oa(d~)] ~/~ 

is a positive concave functional on co(~r We may impose q linear conditions 

(5.8) fla(~)w~(~)a(dr = c j, j = 1, . . . ,q,  

where wl(~),...,wq(~) are continuous functions on I .  Theorem 6 can be stated 

as follows: 

THEOREM 10. Let d be a bounded and closed set of nonneeative functions 

in L2(da) normalized by the condition (5.5). Assume that K(~,~I) is a positive 

kernel defined on I x I satisfyin 9 the integrability condition (5.2). Then 

the maximum (5.7) on co(d )  combined with q linear conditions (5.8) is achieved 

Jor some function b(O of the form 
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p(p+ 1)/2+q 

(5.9) b(~) = X cqai(~), o h >_ O, ~, ct i = 1 
i=1 

and a i ( O e d  f o r  i = 1 , . . . , p (p  + 1)/2 + q.  Moreover i f  K(~,~l) is a continuous 

oscillating kernel  then at most p + q components o f  the funct ion b(~) (5.9) do 

not vanish. 
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